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The Banach space ¢, equipped with Day’s norm is shown to contain an isomorph
of the unit ball of ¢, (with the original norm) having the property that no point of
its complement has a nearest point in it. ¢ 1987 Academic Press. Inc.

1. INTRODUCTION

A set S in a Banach space X is said to be antiproximal if no point in XA\
has a nearest point in S. Let C be a closed and bounded symmetric convex
body in X. Then, as can be readily seen, C is antiproximal if and only if the
closed unit ball U is antiproximal in the norm induced by C. Thus
antiproximality (for closed and bounded symmetric convex bodies) is sym-
metric in the pair U, C. Somewhat pictorially we call such pairs companion
bodies. The existence of such bodies (in ¢,) was the main theme of [2]. In
it an isomorphism of ¢, onto itself was constructed such that U and its
isomorph constitute a pair of companion bodies. The question raised there.
whether ¢, equipped with Day’s norm also possesses the same property,
was answered in the affirmative, first by Cobzas [1] and later, indepen-
dently, by R. C. O’Brien (private communication). Both authors employ
the isomorphism of [2] to show that D, the closed unit ball in Day’s norm,
and its isomorph are companion bodies. It is the purpose of this note to
show that D can also be matched with an isomorph of U to form a pair
with the said property.

2. DaY’s NorRM

We recall that Day’s norm in ¢, is defined by

p(x) =( 5 (2*'(x,»,>)2>

j=1
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where (x;, X;,,.., X;,..) is a rearrangement of (x,, x,,..)=x€ ¢, in such a
manner that

beal = lxg) > (1)

This norm was shown by Rainwater [3] to be locally uniformly convex.

3. THE IsoMORPHISM A

Let g,€/,, i=1,2,.. be defined by setting g,=(a;, a;,...), Where a,; =1,
A tomeny=2"""""n=1,2,., and a;=0 otherwise. In [2] it was poin-
ted out that the linear operator A:cy,— ¢, defined by (Ax),=gd{x),
i=1,2,.. 1s bounded and has a bounded inverse. In addition it was obser-
ved that for any ge/,, g #0, to attain its supremum on A[ U], g must be a
nonzero finite linear combination of the functionals g;,. This last fact is
especially useful since companion bodies are also characterized by the
property that continuous linear functionals attain their suprema on at most
one of them (cf. [2]).

THEOREM 1. Let D be the closed unit ball of ¢, in Day's norm (ie.,
D={xecy: p(x}<1}) and let U be the closed unit ball of ¢, (in the usual
norm). Then A[U7] is antiproximal.

Proof. Let g=(4,, 4,,..)€l,, g#0, be such that

g(x) =sup{g(z): € A[U]}.

We have to show that g fails to attain its supremum on D. As remarked
before, g must be a nonzero linear combination of the functionals g; defined
there; i.e, g=2"7, a,g, for some positive integer m and at least one o, # 0.
Suppose then that a y =(y,, y,,..) € D exists such that

g(y)=sup{g(z):zeD}.

We may, and shall, assume that ¢;>0 (i=1, 2,...,m), and y, =20 (i=1, 2,...).
Repeatedly, we shall make use of the elementary fact that, for any y in the
interior of D,

g(y)<gl(y). (2)
We distinguish between the two mutually exclusive possibilities:

(a) There exists a positive integer k, such that y, >0 and y, =0 for
all k> k.

(b) There is no such k4.
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In case (a), 4, > 0, as otherwise replacing y,, with zero produces a point §
in the interior of D with g(1)=g(r), a contradiction of (2). Hence an /
(1<ig<m) must exist such that ¢;>0 and either i=4k, or elsc
2tk — 1)Y=k, for some integer k,. Let v=(7,, I'»...) be defined by setting
Fho ™= Yag— & Foors 1) =254,,6, and ¥, =y, otherwise. Here k, >k, 0 <z <
Y1+ 2“’3/'.f0) ', and, moreover, ¢ is sufficiently small so that the
rearrangement { 1) of y is left intact.
We now have

g —gly)=al—rge+2 ©204,,6)=0.

On the other hand,

- s (=) =y 2%
([7()) ~(p(‘)) < 22, 23,,

=2 Ve[ =2y, + el + 2742 )] <.

Here r is the index /; corresponding to y,, in the rearrangement (1) of r.
Thus (2) applies, ruling out possibility {a).

In case (b) there exists a positive integer k, > m + 1 such that y, >0 and
Ve <y, for all k> k. Clearly k,=2%(2j,— 1) for some i, (0 <i,<m) with
a,,>0 and some positive integer j,. (If not then 4, =0 so that, for
obtained from y by replacing y,, with zero, p(y)<p(y) but g{)=g(r), in
violation of (2).) If now, k, =2°(2j,+ 1) then 0 < v, <y,. (If not then, for
7 obtained from y by permuting 1, with v, p(¥) = p(y) while g(#) > g( »),
which is clearly impossible.) Let 0 <&, <y, — 1y, and define ¥ = (¥, I'»,...)
by setting ¥, =Vi, —& ¥i, =V +2. and ¥,=y, otherwise. Here, too,
0 <e<e, is small enough to leave the rearrangement (1) of y intact. Now,

g(F) —gyy=a,(—eip,+ 264 )=a,(—e2 422 *1)=0.
On the other hand, with r =i, where v, corresponds to y,, in (1), we have

— 26y, et dey, e
< 22r + N2(r+ 1}

b

< 2 2'.8( - 2,}'.1\’() + }"/\'l + 26) < 7}%1 < 0’

and again p(7) < p(y), contradicting (2).
Thus both cases (a) and (b) are ruled out, showing that g cannot achieve
its supremum on D and proving the assertion of the theorem.
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4. A RESTATEMENT OF THEOREM 1
Applying 4~ ' to D and A[U] we arrive at

COROLLARY. [n ¢, there exists a closed and bounded symmetric body
which is locally uniformly convex and antiproximal.
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